N-H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe-N2 and Fe-CN Reductions.
نویسندگان
چکیده
Fe-mediated biological nitrogen fixation is thought to proceed via either a sequence of proton and electron transfer steps, concerted H atom transfer steps, or some combination thereof. Regardless of the specifics and whether the intimate mechanism for N2-to-NH3 conversion involves a distal pathway, an alternating pathway, or some hybrid of these limiting scenarios, Fe-NxHy intermediates are implicated that feature reactive N-H bonds. Thermodynamic knowledge of the N-H bond strengths of such species is scant, and is especially difficult to obtain for the most reactive early stage candidate intermediates (e.g., Fe-N═NH, Fe═N-NH2, Fe-NH═NH). Such knowledge is essential to considering various mechanistic hypotheses for biological (and synthetic) nitrogen fixation and to the rational design of improved synthetic N2 fixation catalysts. We recently reported several reactive complexes derived from the direct protonation of Fe-N2 and Fe-CN species at the terminal N atom (e.g., Fe═N-NH2, Fe-C≡NH, Fe≡C-NH2). These same Fe-N2 and Fe-CN systems are functionally active for N2-to-NH3 and CN-to-CH4/NH3 conversion, respectively, when subjected to protons and electrons, and hence provide an excellent opportunity for obtaining meaningful N-H bond strength data. We report here a combined synthetic, structural, and spectroscopic/analytic study to estimate the N-H bond strengths of several species of interest. We assess the reactivity profiles of species featuring reactive N-H bonds and estimate their homolytic N-H bond enthalpies (BDEN-H) via redox and acidity titrations. Very low N-H bond dissociation enthalpies, ranging from 65 (Fe-C≡NH) to ≤37 kcal/mol (Fe-N═NH), are determined. The collective data presented herein provide insight into the facile reactivity profiles of early stage protonated Fe-N2 and Fe-CN species.
منابع مشابه
The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملTheoretical insight of substituent effect in para substituted Fe(CO)4–pyridine complexes
Abstract: Systematic studies on the substituent effect in para substituted Fe(CO)4–pyridine complexes have been studied on the basis of DFT quantum-chemical calculations. The following substituents were taken into consideration: NO2, CN, CHO, F, H, CH3, and OH. Additionally, the Fe–N and Fe–C bonds were characterized on the basis of Atoms in Molecules topological analysis of electron density. I...
متن کاملFirst principles study of H2S adsorption and dissociation on Fe(110)
We report first principles density functional theory (DFT) results of H2S and HS adsorption and dissociation on the Fe(110) surface. We investigate the site preference of H2S, HS, and S on Fe(110). H2S is found to weakly adsorb on either the short bridge (SB) or long bridge (LB) site of Fe(110), with a binding energy of no more than 0.50 eV. The diffusion barrier from the LB site to the SB site...
متن کاملDirect studies on 5-coordinate intermediates formed during substitution at tetrahedral Fe sites: role of bound nucleophile in labilisation of leaving group.
The substitution reactions of the tetrahedral Fe sites in [FeCl(4)](-), [Fe(2)S(2)Cl(4)](2-), [Fe(4)S(4)Cl(4)](2-) and [{MoFe(3)S(4)Cl(3)}(2)(micro-SEt)(3)](3-) with 4-RC(6)H(4)S(-) (R = MeO, Me, H, Cl or NO(2)) all involve rapid binding of the thiolate to a Fe site and formation of a kinetically and spectroscopically detectable intermediate. Kinetic studies allow calculation of the rate of Fe-...
متن کاملTargeting intermediates of [FeFe]-hydrogenase by CO and CN vibrational signatures.
In this work, we employ density functional theory to assign vibrational signatures of [FeFe]-hydrogenase intermediates to molecular structures. For this purpose, we perform an exhaustive analysis of structures and harmonic vibrations of a series of CN and CO containing model clusters of the [FeFe]-hydrogenase enzyme active site considering also different charges, counterions, and solvents. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 8 شماره
صفحات -
تاریخ انتشار 2017